New allergens could be inadvertently created - known allergens could be transferred from traditional foods into GM foods. For instance, during laboratory testing, a gene from the Brazil nut was introduced into soybeans. It was found that people with allergies to Brazil nuts could also be allergic to soybeans that had been genetically modified in this way and so the project was ceased. No allergic effects have been found with currently approved GM foods.
Antibiotic resistance may develop - bioengineers sometimes insert a selectable ‘marker’ gene to help them identify whether a new gene has been successfully introduced to the host DNA. One such marker gene is for resistance to particular antibiotics. If genes coded for such resistance enter the food chain and are taken up by human gut microflora, the effectiveness of antibiotics could be reduced and human infectious disease risk increased. Research has shown that the risk is very low; however, there is general agreement that use of these markers should be phased out.
Cross-breeding - other risks include the potential for cross-breeding between GM crops and surrounding vegetation, including weeds. This could result in weeds that are resistant to herbicides and would thus require a greater use of herbicides, which could lead to soil and water contamination. The environmental safety aspects of GM crops vary considerably according to local conditions.
Herbicide tolerant (HR) crops - the introduction of the glyphosate resistant soybean in 1996 was the start of crops that gave farmers an opportunity to reduce the cost of their herbicide use. However, the increasing acreage of HR crops (such as soybean and canola) has resulted in an increase in the types of weeds that are now glyphosate resistant (GR). These GR weeds may have a major environmental influence on crop production in years to come.
Pesticide resistant insects - the genetic modification of some crops to permanently produce the natural biopesticide Bacillus thuringiensis (Bt) toxin could encourage the evolution of Bt-resistant insects, rendering the spray ineffective. Wherever pesticides are used, insect resistance can occur and good agricultural practice includes strategies to minimise this.
Biodiversity - growing GM crops on a large scale may also have implications for biodiversity, the balance of wildlife and the environment. This is why environmental agencies closely monitor their use. Since bees are used to pollinate crops, there is also some suggestion that GM crops may affect organic farming.
Cross-contamination - plants bioengineered to produce pharmaceuticals (such as medicines) may contaminate food crops. Provisions have been introduced in the USA requiring substantial buffer zones, use of separate equipment and a rule that land used for such crops lie fallow for the next year.
Pesticide use - the use of pesticide resistant (Bt) crops would suggest a reduction in the application of pesticides; however, recent surveys in the USA suggest that Bt-corn that targets corn borer has not lowered pesticide use, since most pesticides are directed against other corn pests.
Health effects - minimal research has been conducted into the potential acute or chronic health risks of using GM foods and of their performance in relation to a range of health effects. Research also needs to involve independent (not company-based) assessment of the long-term effects of GM crops in the field and on human health.
Social and ethical concerns Concerns about the social and ethical issues surrounding genetic modification include:
The possible monopolisation of the world food market by large multinational companies that control the distribution of GM seeds.
Using genes from animals in plant foods may pose ethical, philosophical or religious problems. For example, eating traces of genetic material from pork could be a problem for certain religious or cultural groups.
Animal welfare could be adversely affected. For example, cows given more potent GM growth hormones could suffer from health problems related to growth or metabolism.
New GM organisms could be patented so that 'life' itself could become commercial property through patenting.
Regulation of GM foods Current food regulations in Australia state that a GM food will only be approved for sale if it is safe and is as nutritious as its conventional counterparts. Food regulatory authorities require that GM foods receive individual pre-market safety assessments prior to use in foods for human consumption. The principle of ‘substantial equivalence’ is also used. This means that an existing food is compared with its genetically modified counterpart to find any differences between the existing food and the new product. The assessment investigates:
Nutritional content
Toxicity (using similar methods to those used for conventional foods)
Tendency to provoke any allergic reaction
Stability of the inserted gene
Whether there is any nutritional deficit or change in the GM food
Any other unintended effects of the gene insertion.
Better Health Channel. (2010, February). Genetically Modified Foods. Retrieved from http://www.betterhealth.vic.gov.au/bhcv2/bhcarticles.nsf/pages/Genetically_modified_foods